extension | φ:Q→Aut N | d | ρ | Label | ID |
(C32×C9)⋊1S3 = He3⋊C18 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):1S3 | 486,24 |
(C32×C9)⋊2S3 = C3×C32⋊C18 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | | (C3^2xC9):2S3 | 486,93 |
(C32×C9)⋊3S3 = C9×C32⋊C6 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):3S3 | 486,98 |
(C32×C9)⋊4S3 = C3×He3.C6 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):4S3 | 486,118 |
(C32×C9)⋊5S3 = C3×He3.2C6 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):5S3 | 486,121 |
(C32×C9)⋊6S3 = C33⋊C18 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | | (C3^2xC9):6S3 | 486,136 |
(C32×C9)⋊7S3 = C9×He3⋊C2 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):7S3 | 486,143 |
(C32×C9)⋊8S3 = (C32×C9)⋊8S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):8S3 | 486,150 |
(C32×C9)⋊9S3 = He3.C3⋊S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):9S3 | 486,169 |
(C32×C9)⋊10S3 = He3⋊C3⋊2S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):10S3 | 486,172 |
(C32×C9)⋊11S3 = He3⋊2D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):11S3 | 486,56 |
(C32×C9)⋊12S3 = C3×C32⋊2D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | | (C3^2xC9):12S3 | 486,135 |
(C32×C9)⋊13S3 = He3⋊3D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):13S3 | 486,142 |
(C32×C9)⋊14S3 = (C32×C9)⋊S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):14S3 | 486,149 |
(C32×C9)⋊15S3 = C3×He3.3S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):15S3 | 486,168 |
(C32×C9)⋊16S3 = C3×He3⋊S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):16S3 | 486,171 |
(C32×C9)⋊17S3 = C33⋊6D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | | (C3^2xC9):17S3 | 486,181 |
(C32×C9)⋊18S3 = He3⋊4D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):18S3 | 486,182 |
(C32×C9)⋊19S3 = He3.(C3⋊S3) | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):19S3 | 486,186 |
(C32×C9)⋊20S3 = C3⋊(He3⋊S3) | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):20S3 | 486,187 |
(C32×C9)⋊21S3 = C3≀C3⋊S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 27 | 6+ | (C3^2xC9):21S3 | 486,189 |
(C32×C9)⋊22S3 = C3×He3.4S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):22S3 | 486,234 |
(C32×C9)⋊23S3 = C9○He3⋊3S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):23S3 | 486,245 |
(C32×C9)⋊24S3 = C3≀S3⋊3C3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 27 | 3 | (C3^2xC9):24S3 | 486,125 |
(C32×C9)⋊25S3 = C3×He3.4C6 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9):25S3 | 486,235 |
(C32×C9)⋊26S3 = C9○He3⋊4S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9):26S3 | 486,246 |
(C32×C9)⋊27S3 = C3⋊S3×C3×C9 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 54 | | (C3^2xC9):27S3 | 486,228 |
(C32×C9)⋊28S3 = C9×C33⋊C2 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 162 | | (C3^2xC9):28S3 | 486,241 |
(C32×C9)⋊29S3 = C32×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 54 | | (C3^2xC9):29S3 | 486,227 |
(C32×C9)⋊30S3 = C3×C32⋊4D9 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 162 | | (C3^2xC9):30S3 | 486,240 |
(C32×C9)⋊31S3 = C33⋊9D9 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 243 | | (C3^2xC9):31S3 | 486,247 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C32×C9).1S3 = C9⋊S3⋊C9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | | (C3^2xC9).1S3 | 486,3 |
(C32×C9).2S3 = (C3×C9)⋊D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9).2S3 | 486,21 |
(C32×C9).3S3 = (C3×C9)⋊3D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9).3S3 | 486,23 |
(C32×C9).4S3 = C3×C9⋊C18 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | | (C3^2xC9).4S3 | 486,96 |
(C32×C9).5S3 = C9×C9⋊C6 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9).5S3 | 486,100 |
(C32×C9).6S3 = C9⋊(S3×C9) | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | | (C3^2xC9).6S3 | 486,138 |
(C32×C9).7S3 = C9⋊C9⋊2S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9).7S3 | 486,152 |
(C32×C9).8S3 = C32⋊D27 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9).8S3 | 486,17 |
(C32×C9).9S3 = C3.2(C9⋊D9) | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 162 | | (C3^2xC9).9S3 | 486,42 |
(C32×C9).10S3 = C32⋊2D27 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9).10S3 | 486,51 |
(C32×C9).11S3 = (C3×C9)⋊5D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9).11S3 | 486,53 |
(C32×C9).12S3 = (C3×C9)⋊6D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9).12S3 | 486,54 |
(C32×C9).13S3 = 3- 1+2⋊D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9).13S3 | 486,57 |
(C32×C9).14S3 = C92⋊9C6 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9).14S3 | 486,144 |
(C32×C9).15S3 = C3×3- 1+2.S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9).15S3 | 486,174 |
(C32×C9).16S3 = (C32×C9).S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9).16S3 | 486,188 |
(C32×C9).17S3 = C33.D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 27 | 6+ | (C3^2xC9).17S3 | 486,55 |
(C32×C9).18S3 = C3×C27⋊C6 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9).18S3 | 486,113 |
(C32×C9).19S3 = C92⋊3C6 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9).19S3 | 486,141 |
(C32×C9).20S3 = C33.5D9 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 81 | | (C3^2xC9).20S3 | 486,162 |
(C32×C9).21S3 = C92⋊4S3 | φ: S3/C1 → S3 ⊆ Aut C32×C9 | 54 | 6 | (C3^2xC9).21S3 | 486,140 |
(C32×C9).22S3 = D9×C3×C9 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 54 | | (C3^2xC9).22S3 | 486,91 |
(C32×C9).23S3 = C9×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 54 | | (C3^2xC9).23S3 | 486,133 |
(C32×C9).24S3 = C32×D27 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 162 | | (C3^2xC9).24S3 | 486,111 |
(C32×C9).25S3 = C3×C9⋊D9 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 162 | | (C3^2xC9).25S3 | 486,134 |
(C32×C9).26S3 = C3×C27⋊S3 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 162 | | (C3^2xC9).26S3 | 486,160 |
(C32×C9).27S3 = C92⋊8S3 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 243 | | (C3^2xC9).27S3 | 486,180 |
(C32×C9).28S3 = C32⋊4D27 | φ: S3/C3 → C2 ⊆ Aut C32×C9 | 243 | | (C3^2xC9).28S3 | 486,184 |